技术频道

娓娓工业
您现在的位置: 中国传动网 > 技术频道 > 技术百科 > 起重机直驱永磁同步电机流固耦合传热计算

起重机直驱永磁同步电机流固耦合传热计算

时间:2021-08-16 23:00:36来源:沈阳工业大学电气工程学院 闵 健 冯桂宏 张炳义

导语:​针对永磁同步电机在起重机直驱方面上的应用,从电机三维模型出发,对定转子铁心、槽、机壳、绝缘、端盖等机械结构做了合理模型简化,对比分析周向和轴向两种水路结构对电机温升的影响,选取合适的冷却水路形式,并基于CFD 软件fluent,对电机进行流固耦合传热分析,得到绕组、磁钢等温度分布规律,与试验结果对比验证其仿真结果正确性。此项研究为电机设计人员的热负荷选取及电机结构设计提供了理论依据。

  0 引言

       永磁电机应用到起重机上有着天然的优势,其过载能力强、转矩密度高的特点更适合起重机起升机构的基本要求。但相比于传统的异步电机加减速器结构,用来直驱起重机的永磁电机体积必然增大,考虑到永磁电机在起重机上的安装尺寸,需尽量缩小电机体积,而这样会使定子绕组的电密升高,造成电机温度升高,会降低电机的性能,严重则会引起永磁体不可逆退磁,损坏电机,造成工厂停产问题。所以,研究其热负荷的选取至关重要[1]。

  一般来说分析电机温升问题的方法大致有三种:公式法、等效热路法、数值分析法。公式法是基于牛顿冷却定律来计算电机中各个部分的平均温升,但因其计算精度低,基本不能满足电机热分析的要求;等效热路法则是通过热路与电路的相似关系,电路中的串并联规律也同样适合于热路。直观简单,工作量小,但缺点是不能计算出最高温升点;数值分析法则是利用计算机求解数值计算的方法,准确度较高,能预测电机真实的温度分布情况,可通过优化电机参数来得到电机最佳热负荷的选取,提高转矩密度。电机中流固耦合传热问题的数值分析法则采用有限体积法(FVM) 计算更加的准确[2]。

  本文对一台起重机直驱永磁电机模型进行合理简化,计算气隙和机壳等效散热系数,分析轴向和周向水路散热情况,建立1/4 仿真模型,对其进行流固耦合传热仿真,计算关键部位的温升情况,将仿真结果与试验数据作对比,验证了仿真方法的正确性。

  1 流固耦合传热原理

水冷永磁电机的散热问题属于冷却液与机壳水道之间的的对流换热问题,无法作为已知条件预先给定热边界,而只能被看作为计算结果。这种动态的热量交换问题就叫做耦合传热问题。

  起重机直驱永磁电机采用传导与对流换热的方式进行散热。由能量守恒可知,在流固耦合的界面处,流体所吸收的热量等于固体部分传出的热量,电机固体部分的傅里叶热传导方程和流体对流换热方程可表示为

  公式1.jpg

      式中:kcond 为固体的导热系数,hconv 为局部对流换热系数,Tf 和Tw 分别为流体温度和壁面处温度。

  2 永磁电机耦合传热模型建立

      2.1 水路形式的选取

水冷永磁电机的水道多为轴向水道和周向(螺旋)水道[3],如图1 所示。对比分析两种不同水路形式下的温度分布、水流速分布、对流换热系数分布,选取螺旋水道形式更合适。

   (a) 轴向水道 (b) 螺旋水道图1 两种水路形式的对比.jpg


  (a) 轴向水道 (b) 螺旋水道图1 两种水路形式的对比

  2.2 计算模型和基本假设计算模型

       包括固体部分和流体部分,考虑到计算机资源的限制,此处必须对电机模型进行简化[4,5]。基本假设:1) 定子线圈受热均匀;2) 定子铁心受热均匀;3) 忽略转子铁心损耗;4) 把水看作不可压缩的流体;5) 由于线绝缘、层绝缘和槽绝缘均非常薄,无需分别处理,将其作为一个整体处理,定子槽处理见图2;6) 螺旋水道简化为圆周型水道,可将电机等效为对称模型,使用SolidWorks 建模1/4 模型如图3 所示。

  槽内导体等效图.jpg

  图2 槽内导体等效图

  

三维温度场的计算模型.jpg

  图3 三维温度场的计算模型

  2.3 各部分导热系数的处理

1)气隙部分由于转子旋转且转子铁心表面有一定的粗糙度,所以当转子旋转时气隙处的导热能力会强与静止的状态,引入气隙导热系数λ δ,即用一个新的导热系数将转子等效为静止状态,这样在单位时间内两种状态下气隙处的流体所传递的热量相等。

  假设定转子表面光滑,计算气隙处的雷诺数

  公式2.jpg

  式中:nφ 1 为空气流动速度, 即转子转动线速度,且nφ 1=D2 n /60 ;n 为电机转速 ;δ 为气隙长度,

  d=(Di1-D2)/2;Di1、D2 分别为定子内径和转子外径;ν 为流体的运动粘度。空气在气隙中流动的临界雷诺数

  公式3.jpg

  当Re < Reair 时,判断气体流动为层流,导热系数为空气导热系数;当Re > Reair 时,气体流动为紊流,等效导热系数

  公式4.jpg

  计算结果为:Re = 262.06,Reair = 587.19,所以气隙处的有效导热系数即为空气导热系数。

2)机壳部分机壳表面散热系数和外界风速环境有关,在室内无风环境下,根据经验给定机壳表面散热为8 W/(m2·K)。电机其余各部分导热系数如表1 所示。

表1.jpg

  2.4 热源分布

由于起重机直驱永磁电机转速较慢,频率较低,忽略电机转动时的机械损耗和转子铁心的涡流损耗,主要发热部分为绕组所产生的铜耗和定子产生的铁耗,而由于永磁体对温度的要求很高,且体积很小,故这部分发热量不能忽略。电机各部分热源发热情况如表2 所示。

  电机各部分热源发热情况.jpg

  2.5 边界条件

为了得到导热介质中的温度分布情况,必须求解热流微分方程,需给定其边界条件:热计算的边界条件(第一类边界条件)

  公式5.jpg

  式中:Tc 为物体边界S1 上给定的温度,f(x,y,z,t)为温度函数。热流边界条件(第二类边界条件)

  

公式6.jpg

  式中:q0 为物体边界S2 上得热流密度;g(x,y,z,t)为热流密度函数;λ 为垂直于物体表面的热导率[6,7]。本文流体的雷诺数Re 大于2 300,为紊流,其湍动能与流体流速的关系为

 公式7.jpg

  式中:u 为流速,d 为水力直径,v 为运动粘度,Re为雷诺数。

  3 温度场计算及分析

 3.1 水路形式及其温度仿真

如前所述,在两种水道面积相同的情况下,分别对两种水道结构的机壳添加相同面热源,使用fluent 对两种水道的仿真分析,结果如图4 所示。

  

轴向水道计算结果.jpg

  图4 轴向水道计算结果

  如图5 所示,轴向水道散热效果方面可达到要求,但在圆周方向的温度梯度很大,造成三相绕组温度不均,且在水流转弯处流速很低出现了“死水区”,造成局部温度过高的情况。而螺旋水道的温度在周向的温度梯度小,三相绕组的温度分布基本一致,且水流流速很稳定,散热效果也很好,最终根据对比选择螺旋水道形式。

  

周向水道计算结果.jpg

  图5 周向水道计算结果

  3.2 永磁电机的整体仿真

文中所述永磁电机为F 级绝缘,磁钢牌号采用N38SH,考虑裕量后按B 级绝缘考核,绕组和磁钢温度不得超过130℃,应用fluent 对电机1/4 模型流固耦合仿真,环境温度为40℃,入水温度为60℃,冷却参数具体见表3。经fluent 计算,仿真计算结果见图6。图6a 为电机仿真模型整体温升情况,根据云图分布规律可判断出计算结果收敛,未出现不连续情况。图6b 为绕组温度的分布情况,绕组的最高温度在端部处为99.42℃,这是因为端部绕组直接和腔内的空气接触,而空气的导热性能差,所以造成端部温度稍高于中间。最低温度为上层绕组的中间部位89.10℃,是因为上层绕组更接近水道,更容易将热量带走。绕组整体温度相差不大,是因为铜的导热系数大,所以温度分布情况较均匀。图6c 为永磁体温度分布情况,其表现出中间温度稍高于两端,这是由于两端除热量传导通过水冷机壳散出,还会通过腔内空气散出一部分。最高温度和最低温度仅差1.03℃,且远为到达温度极限。

 电机各部分温升云图1.jpg 


 电机各部分温升云图2.jpg 


  图6 电机各部分温升云图

  3.3 仿真与实验数据的对比

电机关键部位温升( 平均值) 与试验测得数据作对比,如下表所示。数据显示,由于实验环境温度与仿真环境温度存在偏差,所以仿真计算的温度值与试验测量的温度也存在一些误差,但总体来说相差不大。可以验证仿真结果的正确性。

数据作对比.jpg

  4 结论

       本文基于fluent 对起重机直驱永磁电机进行了温度场计算,针对电机水冷散热方式,对电机结构进行合理简化,计算了气隙和机壳部分的等效导热系数,通过对比分析轴向和周向水路散热的特点,选取周向水道的水路形式,并建立1/4 的仿真模型。通过加载热源及水路参数,通过有限体积法计算得到电机的最高温度为99.42℃,位于绕组的端部位置。永磁体最高温度为77.22℃,未达到极限温升。且绕组和永磁体在轴向方向上温度变化范围较小。通过对比试验测得的数据,计算误差较小,分别为机壳9.5%,绕组5.4%,永磁体7.4%,定子铁心10.3%,对比结果验证了本方法的可行性。


  参考文献[1] 邹丽. 稀土永磁电机在起重机行业的应用研究[J]. 起重运输机械,2014(8):70-73.[2] 李岩,闫佳宁,夏加宽. 基于Fluent 的异步起动永磁电机温度场分析[J]. 电气工程学报,2015(9):15-21.[3] 刘旺. 低速大转矩永磁同步电机设计与热计算[D]. 沈阳:沈阳工业大学,2019.[4] Chen P,Shen Q P,Han X Y,et al.Analysis of Water Cooled Permanent Magnet Traction Motors Using 3D Fluent and Thermal Field[J].Applied Mechanics and Materials,2013,325-326:375-378.[5] Meng D,Liu Y,Zhang Q,et al.Calculation of 3D tempera ture field of the Submersible motor based on FLUENT[C]//Power & Energy Engineering Conference.2010.[6] 佟文明, 舒圣浪,朱高嘉,等. 基于有限公式法的水冷永磁同步电机三维温度场分析[J]. 电工电能新技术,2016(7):36-41.[7] 冯桂宏,张书伟,张炳义,等. 挤塑机直驱永磁电机温度场的计算[J]. 机电工程,2016(1):96-100.


标签: 电机

点赞

分享到:

上一篇:单晶硅和多晶硅太阳能电池有...

下一篇:电阻,电感,电容,MOSFET主...

中国传动网版权与免责声明:凡本网注明[来源:中国传动网]的所有文字、图片、音视和视频文件,版权均为中国传动网(www.chuandong.com)独家所有。如需转载请与0755-82949061联系。任何媒体、网站或个人转载使用时须注明来源“中国传动网”,违反者本网将追究其法律责任。

本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。

网站简介|会员服务|联系方式|帮助信息|版权信息|网站地图|友情链接|法律支持|意见反馈|sitemap

中国传动网-工业自动化与智能制造的全媒体“互联网+”创新服务平台

网站客服服务咨询采购咨询媒体合作

Chuandong.com Copyright ©2005 - 2023 ,All Rights Reserved 版权所有 粤ICP备 14004826号 | 营业执照证书 | 不良信息举报中心 | 粤公网安备 44030402000946号